
1

A Hybrid Approach to Exascale Operating Systems
Yoonho Park∗ Eric Van Hensbergen Marius Hillenbrand Todd Inglett Bryan Rosenburg Kyung Dong Ryu

IBM Research and Systems Technology Group

I. CHALLENGES ADDRESSED

In order to reach exascale, systems will require several
orders of magnitude improvement in node-level performance
and power efficiency. This aggressive power/performance chal-
lenge has led hardware vendors to re-evaluate node-level
processor architectures. While it is anticipated that processors
will continue to follow the general trend towards massive
multi-core to increase performance, there is an increased focus
on how the cores themselves may be simplified to optimize
for power efficiency and density. Additionally, node-level
components traditionally considered to be peripherals such as
networking interfaces, secondary storage, and even memory
are being imbued with their own processing elements and
purpose-built accelerators. The programmable nature of this
heterogeneous set of system elements broadens the scope of
responsibility for systems software, transforming the node-
level operating system and runtime into a distributed system
in its own right.

At the same time, there is an increased call for high
performance computing system software to provide richer (and
more familiar to the desktop) environments allowing a broader
range of applications. This has implications across the full
range of system software. It results in a need to support the
capabilities provided by a traditional, time-shared, general-
purpose operating system, such as Linux, including libraries,
file systems, and daemon-provided services. One challenge
with just using Linux is that historically, Linux developers
have been reticent to adopt changes specific to the HPC
community. This is in part because the Linux community tends
to accept changes that matter for the general population, while
HPC architectures have tended to push technology limits in
order to achieve the highest performance for scientific and
engineering applications.

Traditionally, HPC operating systems have fallen into one
of two categories: full-weight kernels (FWK) such as Linux
and light-weight kernels (LWK) such as Blue Gene’s Compute
Node Kernel (CNK) [5] or Sandia’s Catamount kernel for
Cray systems [7]. Instead of forcing users and applications
into one of these two extremes, we propose a hybrid approach
which allows the co-existence of both environments on multi-
core platforms while at the same time extending support to
emerging heterogeneous computing environments. We call this
approach a FusedOS [10].

II. MATURITY

In order to study these issues, we implemented a proto-
type FusedOS infrastructure on Blue Gene/Q. Although Blue
Gene/Q has homogeneous cores, we simulate heterogeneous

∗Contact author: yoonho@us.ibm.com

cores by dedicating a set of cores to applications and running
Linux only on the 17th core as shown in Figure 1. In that
role, cores run almost exclusively in user-mode executing
application code. A small supervisor-state monitor is used only
to simulate the hardware we would expect to help manage
such a heterogeneous environment and forward system calls
and exceptions to the cores running the full-weight kernel.

Memory'

Applica.on'cores'
Linux'
core'

Fig. 1. Partitioning of cores and memory between Linux and applications.

For our prototype we focused on execution of existing Blue
Gene/Q applications. CNK supervisor code is packaged as a
library we call CL and runs as part of a shadow user process
on Linux. It is responsible for launching the workload on the
application cores and servicing exceptions and requests while
the application is running. Because it is running as a user
process, it can be managed in familiar ways and has a normal
user context for accessing Linux resources such as the file
system, network, etc.

Our current benchmark results indicate that there are per-
formance and noise advantages to our approach even on
a homogeneous system. Extensive evaluation comparing OS
noise using the FTQ benchmark between FusedOS, Linux, and
CNK have been made showing FusedOS noise characteristics
equivalent to CNK which essentially demonstrates no noise at
all. Additionally, these same evaluations showed dangerous
noise trends in Linux on massive multicore systems both
with and without the use of hardware threading mechanisms.
Performance between FusedOS and CNK was also roughly
equivalent, with some surprising cases where FusedOS outper-
formed CNK and others where the remote system call over-
head caused a slight degradation of performance for FusedOS.
In all cases, the application on FusedOS outperformed Linux.

III. UNIQUENESS

The challenges of multicore and heterogenous systems are
not necessarily unique to exascale computing, however high



2

performance computing applications tend to have tighter con-
straints on aspects such as OS interference, power efficiency,
and compute performance than typical commerical applica-
tions. Additionally, the aggressive power/performance targets
of exascale will drive more radical approaches to system
architectures requiring the use of such an approach sooner for
exascale than it would be required for commerical computing.

IV. NOVELTY

It may be tempting to compare our approach to microkernel
or more specifically exokernel [4] efforts of the past. While
aspects of our approach are closely derived from such efforts,
we believe the hybrid kernel approach in conjunction with
the specific requiremenets and nature of high performance
computing applications to be a different enough design point
to justify further exploration and investigation.

Similarly, it is valid to ask why we did not use virtualization
as a mechanism for partitioning node resources and deploy-
ing applications directly on top of the hypervisor layer. An
approach similar to this was taken by some of the co-authors
in the past for both high-performance [6] and commercial [2]
workloads. While this approach showed promise, there was
a higher degree of overhead for forwarding operations to the
full-weight kernel due to the additional protection mechanisms
of virtualization. While modern general-purpose processors are
making great strides at reducing these overheads, a founding
premise of the FusedOS project is that aggressive power-
efficiency and density targets for exascale processors would
prohibit more complex features such as hardware accelerated
virtualization within the processor.

Another approach, taken by ZeptoOS [1], is to start with
a Linux image and make modifications such as reserving
memory during boot before Linux accesses it, and removing
auxiliary daemons to reduce the noise. By doing so, ZeptoOS
can study operating system issues for petascale architectures
with ten thousand to one million CPUs. A similar study
undertaken by Shmueli et al. [11] looked at the issues that
caused Linux not to scale to tens of thousands of nodes. These
groups attempt to maintain scalability by reducing daemons
and working on memory allocation issues directly within
Linux on homogeneous systems. We believe our approach
is complementary to such an environment in that we also
address heterogeneous systems and provide more architected
mechanisms for dynamic resource reservation and assignment
to applications or system services.

NIX [9] is an effort closely related to our work. Motivated
by personal communication between the teams, its focus is
primarily on role assignment of cores. They are exploring
three different types of roles: time-shared cores (TCs) that run
in a manner similar to a general-purpose operating system,
kernel cores (KCs) that run only in supervisor mode and
handle system services and device drivers as well as system
service requests from applications, application cores (ACs)
that run applications and forward all system calls to kernel-
mode processes in TCs or KCs. While NIX has proven to
be a great testbed for evaluating systems concepts, its user
environment is different enough to make running existing HPC

applications very difficult. By contrast our FusedOS approach
can run existing CNK applications without modification, and
could easily be extended to run vanilla Linux binaries within
the application cores.

V. APPLICABILITY

Our early prototype illustrates opportunities for co-design of
heterogeneous processor architectures, heterogeneous nodes,
and heterogeneous platforms as a whole. Exascale architec-
tures may move away from heterogeneous environments, but
we have found performance benefits even within homoge-
neous environments. Beyond dedicating processing cores to
applications, we believe there is also opportunity to look into
dedicating cores to device drivers or other kernel services
in order to isolate critical services or sensitive intellectual
property. Furthermore, by taking advantage of isolated cores
we can also explore deploying more traditional exokernel
library OS mechanisms or other experimental kernels without
impacting the rest of the system. While we have prototyped
the infrastructure on Blue Gene/Q, the design focus on tar-
geting heterogeneity naturally allows it to be applied easily to
different architectures and machine topologies.

VI. EFFORT

There are a number of important design trade-offs to be
studied from an architectural co-design perspective as well as
a number of core operating system design principles which
need to be re-evaluated in such an environment. Additionally,
our hybrid kernel approach needs to be more closely com-
pared to contemporary alternative infrastructures incorporating
processor virtualization such as Palacios [8] and multi-kernel
environments such as Barrelfish [3].

Defining the right API for coordinating deployment of code
across node-local heterogeneous cores, peripherals, and the
broader cluster platform is something that will require iterative
effort and co-design with various run-time and programming
model teams. Elements of the API may motivate changes in the
underlying architecture, and may also require new interfaces
in the vendor’s system management tools.

While a modest amount of effort could provide simple
extensions of our existing prototype helping further validate
the idea, a broader agenda would allow us and interested
partners to more fully explore the design space, evaluate a
larger set of scientific applications at scale, tailor environ-
ments to specific classes of applications, more tightly integrate
with runtimes, and explore incorporating both isolation for
reliability as well as feedback-directed self-aware dynamic
policy management of node- and platform-level partitioning
and workflow component deployment.



3

ACKNOWLEDGEMENTS

We would like to thank the following people for providing
the Linux kernel and build environment used with FusedOS:
Blake Fitch (IBM Watson Blue Gene Active Storage group),
Heiko Schick, Peter Morjan (IBM Boebligen Exascale Innova-
tion Center), and Thomas Gooding (IBM Rochester Blue Gene
kernel team). The motivations behind the hybrid approach
concept came out of conversations with Robert Wisniewski
while he was still at IBM Research.

The Blue Gene/Q project has been supported and partially
funded by Argonne National Laboratory and the Lawrence
Livermore National Laboratory on behalf of the U.S. Depart-
ment of Energy, under Lawrence Livermore National Labora-
tory subcontract no. B554331. Aspects of the early evaluation
of the FusedOS prototype was also supported by the U.S.
Department of Energy under Award Numbers DE-SC0005365
and DE-SC0007103.

REFERENCES

[1] ZeptoOS: The small Linux for big computers.
http://www.mcs.anl.gov/research/projects/zeptoos/.

[2] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva, D. Grove,
K. Kawachiya, O. Krieger, B. Rosenburg, E. Van Hensbergen, and
R. W. Wisniewski. Libra: A library operating system for a JVM in
a virtualized execution environment. In 3rd International Conference
on Virtual Execution Environments, VEE ’07, pages 44–54, New York,
NY, USA, 2007. ACM.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A new
OS architecture for scalable multicore systems. In ACM Symposium on
Operating Systems Principles, pages 29–44, New York, NY, USA, 2009.
ACM.

[4] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel: An oper-
ating system architecture for application-level resource management. In
ACM Symposium on Operating System Principles, pages 251–266, 3–6
December 1995.

[5] M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski. Experi-
ences with a lightweight supercomputer kernel: Lessons learned from
Blue Gene’s CNK. In ACM/IEEE International Conference for High
Performance Computing (SC10), New Orleans, LA, November 2010.

[6] E. V. Hensbergen. PROSE: partitioned reliable operating system envi-
ronment. ACM SIGOPS Operating Systems Review, 40(2):12–15, 2006.

[7] S. Kelly and R. Brightwell. Software architecture of the lightweight
kernel, Catamount. In Cray Users’ Group Annual Technical Conference,
Albuquerque, New Mexico, June 2005.

[8] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen, and R. Brightwell. Palacios: A
new open source virtual machine monitor for scalable high performance
computing. In IEEE International Parallel & Distributed Processing
Symposium, April 2010.

[9] R. Minnich, N. Evans, E. Soriano, F. Ballesteros, J. McKie, G. Guardi-
ola, and C. Forsyth. High performance cloud computing is NIX. Bell
Labs Technical Conference, 2011.

[10] Y. Park, E. V. Hensbergen, M. Hillenbrand, T. Inglett, B. Rosenburg,
K. Ryu, and R. Wisniewski. FusedOS: Fusing LWK performance with
FWK functionality in a heterogeneous environment. In International
Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), 2012. (Draft under submission).

[11] E. Shmueli, G. Almási, J. Brunheroto, J. Castaños, G. Dózsa, S. Kumar,
and D. Lieber. Evaluating the effect of replacing CNK with Linux on the
compute-nodes of Blue Gene/L. In 22nd ACM International Conference
on Supercomputing (ICS 2008), Island of Kos, Greece, June 2008.


